Preparation and characterization of yeast nuclear extracts for efficient RNA polymerase B (II)-dependent transcription in vitro.
نویسندگان
چکیده
We present a reproducible method for the preparation of nuclear extracts from the yeast Saccharomyces cerevisiae that support efficient RNA polymerase B (II)-dependent transcription. Extracts from both a crude nuclear fraction and Percoll-purified nuclei are highly active for site-specific initiation and transcription of a G-free cassette under the Adenovirus major late promoter. At optimal extract concentrations transcription is at least 5 times more efficient with the yeast extracts than with HeLa whole cell extracts. We show that the transcriptional activity is sensitive to alpha-amanitin and to depletion of factor(s) recognizing the TATA-box of the promoter. The in vitro reaction showed maximal activity after 45 min, was very sensitive to Cl-, but was not affected by high concentrations of potassium. We find that the efficiency of in vitro transcription in nuclear extracts is reproducibly high when spheroplasting is performed with a partially purified beta 1,3-glucanase (lyticase). Therefore a simplified method to isolate the lyticase from the supernatant of Oerskovia xanthineolytica is also presented.
منابع مشابه
CTD kinase I is involved in RNA polymerase I transcription.
RNA polymerase II carboxy terminal domain (CTD) kinases are key elements in the control of mRNA synthesis. Yeast CTD kinase I (CTDK-I), is a non-essential complex involved in the regulation of mRNA synthesis at the level of transcription elongation, pre-mRNA 3' formation and nuclear export. Here, we report that CTDK-I is also involved in ribosomal RNA synthesis. We show that CTDK-I is localized...
متن کاملAccurately initiated, enhancer-dependent transcription by RNA polymerase I in yeast extracts.
Nuclear extracts from Saccharomyces cerevisiae support initiation by RNA polymerase I at the 35 S rRNA promoter. Initiation occurs at the same site and is stimulated by the polymerase I enhancer element to about the same extent in vitro as in vivo.
متن کاملA divergent transcription factor TFIIB in trypanosomes is required for RNA polymerase II-dependent spliced leader RNA transcription and cell viability.
Transcription by RNA polymerase II in trypanosomes deviates from the standard eukaryotic paradigm. Genes are transcribed polycistronically and subsequently cleaved into functional mRNAs, requiring trans splicing of a capped 39-nucleotide leader RNA derived from a short transcript, the spliced leader (SL) RNA. The only identified trypanosome RNA polymerase II promoter is that of the SL RNA gene....
متن کاملProximal sequence element-binding transcription factor (PTF) is a multisubunit complex required for transcription of both RNA polymerase II- and RNA polymerase III-dependent small nuclear RNA genes.
The proximal sequence element (PSE), found in both RNA polymerase II (Pol II)- and RNA Pol III-transcribed small nuclear RNA (snRNA) genes, is specifically bound by the PSE-binding transcription factor (PTF). We have purified PTF to near homogeneity from HeLa cell extracts by using a combination of conventional and affinity chromatographic methods. Purified PTF is composed of four polypeptides ...
متن کاملThe Werner syndrome protein is involved in RNA polymerase II transcription.
Werner syndrome (WS) is a human progeroid syndrome characterized by the early onset of a large number of clinical features associated with the normal aging process. The complex molecular and cellular phenotypes of WS involve characteristic features of genomic instability and accelerated replicative senescence. The gene involved (WRN) was recently cloned, and its gene product (WRNp) was biochemi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 18 23 شماره
صفحات -
تاریخ انتشار 1990